

Date Planned ://	Daily Tutorial Sheet-2	Expected Duration : 90 Min
Actual Date of Attempt ://_	JEE Advanced (Archive)	Exact Duration :

- 16. The sodium salt of a carboxylic acid, A was produced by passing a gas, B into an aqueous solution of caustic alkali at an elevated temperature and pressure. A, on heating in presence of sodium hydroxide followed by treatment with sulphuric acid gave a dibasic acid, C. A. sample of 0.4 g of acid C, on combustion gave 0.08g of water and 0.39 g of carbon dioxide. The silver salt of the acid C weighting 1.0 g on ignition yielded 0.71 g of silver as residue. Identify A, B and C. (1990)
- 17. How will you bring about the following conversion? (1990)"Ethanoic acid to a mixture of methanoic acid and diphenyl ketone."
- **18.** The boiling point of propanoic acid is less than that of n-butyl alcohol, an alcohol of comparable molecular weight. (F/T) (1991)
- 19. Arrange the following as stated : (1991) "Increasing order of acidic strength." ${\it CICH}_2{\it COOH}, {\it CH}_3{\it CH}_2{\it COOH}, {\it CICH}_2{\it CH}_2{\it COOH}, {\it (CH}_3)_2{\it CHCOOH}, {\it CH}_3{\it COOH}$
- 20. In the following identify the compounds/reaction conditions represented by the alphabets A, B, and C: $C_6H_5COOH \xrightarrow{PCl_5} A \xrightarrow{NH_3} B \xrightarrow{P_2O_5} C_6H_5CN \xrightarrow{H_2/Ni} C$ (1991)
- **21.** When propionic acid is treated with aqueous sodium bicarbonate, ${\rm CO}_2$ is liberated. The C of ${\rm CO}_2$ comes from :
 - (A) methyl group (B) carboxylic acid group
 - (C) methylene group (D) bicarbonate group
- **22.** Complete the following sequence of the reactions with appropriate structures : (1992)
 - (i) $SO_3H \xrightarrow{Fuming} 1. \text{ NaOH (Fuse)}$ $2. \text{ H}^+$ (ii) $CONH_2 \xrightarrow{P_2O_5} \cdots \xrightarrow{H^+, H_2O} \cdots$
- 23. Complete the following reaction with appropriate structure. (1995) $C_6H_5CHO + CH_3COOC_2H_5 \xrightarrow{\text{NaOC}_2H_5 \text{ in absolute C}_2H_5OH}$ heat
- 24. Complete the following sequence of reactions with appropriate structures. (1995) $CH_3 CH_2 COOH \xrightarrow{\text{Red -P}} A \xrightarrow{\text{(i) Alc. KOH (excess)}} B$
- Which of the following carboxylic acids undergoes decarboxylation easily? Explain briefly. (1995)
 C₆H₅COCH₂COOH
 C₆H₅COCOOH
 - (iii) $C_6H_5CH(OH)COOH$ (iv) $C_6H_5CH(NH_2)COOH$
- A hydrocarbon A of the formula C_8H_{10} , on ozonolysis gives compound $B(C_4H_6O_2)$ only. The compound B can also be obtained from the alkyl bromide $C(C_3H_5Br)$ upon treatment with magnesium in dry ether followed by reaction with carbondioxide and acidification. Identify A, B and C and also give equations for the reactions. (1996)

27. Complete the following, giving the structures of the principal organic products.

(ii)
$$(COOH)_2 + (CH_2OH)_2 \xrightarrow{conc. H_2SO_4} \longrightarrow B$$

(iii)
$$H_3CCOCOC_6H_5 + NaOH \xrightarrow{H_3O^+} C$$

28. Statement-I: Acetic acid does not undergo haloform reaction.

(1998)

Statement-II: Acetic acid has no alpha hydrogen.

- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I
- **(B)** Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- **29.** Identify all the products formed in the following reaction sequence and explain briefly the formation of the products. (1999)

$$\begin{array}{c} O \\ \parallel \\ C - OC_2H_5 \\ \parallel \\ O \end{array} \xrightarrow[]{NaOEt} \xrightarrow[]{O} OC_2H_5 \\ \parallel \\ O \end{array} \xrightarrow[(ii)]{O} \stackrel{(ij) OH^-}{}$$

30. Write the structures of the products A and B.

(2000)

$$\begin{matrix} & & & \\ & \parallel & _{18} \\ \text{CH}_3 & -\text{C} & -\text{O} \, \text{C}_2 \text{H}_5 \\ \end{matrix} \xrightarrow{\text{H}_3 \text{O}^+} \text{A} + \text{B} \end{matrix}$$